There is a fundamental reengineering of the electrical services industry underway. A lot of that change is centered on technical infrastructure and “smart grids.” A smart grid adds intelligence to the electric grid in the form of sensors, smart meters, communications technology, and advanced control methods. The goal is to gather information about the behavior of consumers and suppliers in order to improve the efficiency, reliability, and sustainability of the production and distribution of electricity.

Communications networks enable a two-way flow of data. Understanding how data flows most effectively to and from a control center to devices on the grid will dictate the design parameters for the networks.

Handling Critical Data

Backhaul, high volume data flow with high bandwidth requirements, is the most critical data for power utilities. This includes customer use and billing info, as well as data flow from grid devices to the control center.

Data varies in terms of speed, bandwidth, and throughput. This results in a hybrid communications network to handle the various data flows. Regardless of the speed, backhaul needs the most security, whether wired (fiber optics) or wireless (microwave).

Per IEEE’s smart grid expert, John McDonald:

In the upper grid, closest to the control center, point-to-point technology such as fiber optic cable typically is used to connect the control center with the substations. The number of locations of transmission-level substations that need to be connected with the control center is small, but the density of each is high. High bandwidth is needed for reliability.

Further out on the system, point-to-point technology yields to point-to-multipoint systems. The further you go from the control center, the number of substations increases but the criticality of the data falls off. Typically, the largest number of substations exists as points scattered over a broad area where the network relies on licensed and unlicensed wireless spectrum to provide high throughput at relatively modest cost.

Public wi-fi networks are a good option as they can blanket wide areas cost-effectively. At the edge of the grid, unlicensed spread-spectrum technology is most effective; because these are commonly found in rural areas, little interference is expected.

Preventing Damage

RO4000Preventing thermal and voltage fluctuations is a must for these high performance communication systems. It is also critical to balance demanding performance parameters: signal integrity, dielectric constant (Dk), dissipation factor (Df), and thermal conductivity.

Rogers’ high frequency laminates and circuit materials are designed for the demands of high reliability electronics. The RO4000® Series High Frequency Circuit Materials combine high frequency performance with low cost fabrication methods. The RO3000 High Frequency Laminates (PTFE/Ceramic) deliver improved temperature stability at a fraction of the cost of traditional military-grade counterparts.

 

Leave a Reply

Your email address will not be published. Required fields are marked *