This post authored by John Coonrod originally appeared on the ROG Blog hosted by Microwave Journal.

Choosing a high frequency circuit board material often requires weighing several factors, including cost and performance. A key starting point in sorting through printed circuit board (PCB) materials is usually the dielectric constant, or Dk, one of the essential characteristics of a laminate material and one that is subject to much comparison among different suppliers of PCB materials.

ROG_DkApp_finalThe dielectric constant of a laminate refers to a measure of the capacitance or energy between a pair of conductors in the vicinity of the laminate compared to that pair of conductors in a vacuum. The value for a vacuum is 1.0, with all other materials having a value somewhat higher than that. A laminate with higher values of Dk can store more energy than materials with lower Dk values. But at higher Dk values, electromagnetic energy will flow at a slower rate through the conductors (lower frequency).

Several earlier blog posts addressed different approaches available to measure the Dk of PCB materials. These methods involve different test fixtures and circuit configurations, such as the clamped stripline resonator test method and the full sheet resonance (FSR) test. Unfortunately, depending upon the laminate being measured and the frequency, these methods can reveal very different values of Dk for the same material under test.

For that reason, Rogers Corp. has developed alternative sets of dielectric-constant values, Design Dk values, to represent the company’s laminates during design and engineering stages. These are Dk values that can be used reliably and accurately within commercial computer-aided-engineering (CAE) software tools. The Design Dk values are measured by yet other measurement techniques, the differential phase length method. The approach is based on fabricating two microstrip circuits of significantly different length on the same laminate and in close proximity, identical in every way except for length. The test method measures the transmission characteristics of a quasi-transverse-electromagnetic (quasi-TEM) wave propagation and its phase response for a pair of microstrip transmission line circuits. By comparing the expected phase of the lines for a given frequency with the measured results, it can be possible to calculate the Dk for the laminate. In this approach, a large difference in length, such as 1:3, is recommended to simplify the measurements; the shorter circuit will limit the low-frequency accuracy.

But rather than just take Rogers’ word for it, it is also possible to apply the differential phase length method to a laminate of choice to determine its Dk firsthand. For those interested, Rogers Corp. now offers free downloadable software, Rogers’ Microstrip Dk Calculator Software, to determine PCB Dk values. The software works with the aid of associated test equipment, such as a microwave vector network analyzer (VNA). A high-quality test fixture should be used with the same signal launch for both circuits under test. The software can gather data from the measurements and produce a plot of Dk versus frequency, of particular value to designers of broadband circuits wishing to know the relative dielectric constant of the laminate beyond a certain operating frequency range. The range of frequencies across which this method can test depends on the lengths of the circuits, the return loss between the test fixture and the analyzer, and a number of different network analyzer parameters. The accuracy of the measurements depends on these different parameters and the length ratio between the two transmission lines. In addition to the software, an operator’s manual for performing the measurements can also be downloaded for free. The user’s manual provides details about the test method and why it tends to provide reliable results for Dk values.

These Design Dk values are generated for all of Rogers’ commercial laminates, based on this measurement method. The Rogers Microstrip Dk Calculator Software is available online for free download from the Rogers Technology Support Hub, which also includes technical papers and videos and several calculators, including the latest version of the MWI Microwave Impedance and loss calculator, MWI-2013. This free downloadable software tool features an improved grounded coplanar model, added capability to plot insertion loss as a function of frequency, and can compare as many as five models at one frequency or as many as five models over a range of frequencies.

Visitors to the Rogers Technology Support Hub can also download a copy of the ROG Converter software, a web-based application designed for a tablet or smartphone. It can provide simple conversions of dimensions from metric to English units and back, for temperature, for copper thickness, for CTE, and for thermal coefficient of dielectric constant (TCDk). Recently added conversions include for return loss: as VSWR, mismatch loss, and reflection coefficient. Coming soon is a free software tool that will predict minimum bend radius for a PCB without fracturing the copper traces. Based on Rogers’ materials, it can also help when planning multilayer material stackups.

Do you have a design or fabrication question? John Coonrod and Joe Davis are available to help. Log in to the Rogers Technology Support Hub and “Ask an Engineer” today.

Tagged with:  

4 Responses to Managing PCB Materials: Dielectric Constant (Dk)

  1. […] Dielectric constant is the first number most engineers consider when sorting through different printed-circuit-board (PCB) materials. It is the number that guides the search, when needing a circuit-board material with a high dielectric constant or when a design requires a PCB material with a low dielectric constant. But what does dielectric constant really mean? And how can it affect a design if it is not “the right” dielectric constant? What happens to the circuit if it is designed and fabricated on a PCB material with a high dielectric constant and it should have been one with a low dielectric constant? […]

  2. […] Dielectric constant (Dk) is a key parameter to consider when choosing a microwave printed-circuit board (PCB). But what microwave circuit designers may not always appreciate is the “choice within a choice” with some PCB materials, or when it might make sense to select a circuit material with a higher Dk value. High-Dk circuit materials can make it possible to miniaturize high-frequency circuits beyond what is possible with lower-Dk circuit materials. Understanding where high-Dk circuit materials fit within an RF/microwave designer’s toolkit can provide engineers with a great deal of flexibility when developing both active and passive high-frequency circuits. […]

  3. […] (PCB) material based on what they know of its essential material properties, such as dielectric constant (Dk) and dissipation factor (Df). At lower frequencies, having accurate material parameters may be […]

  4. […] mechanical and electrical traits of the dielectric material, including its relative permittivity or dielectric constant (Dk), can contribute quite a bit to the final performance levels and consistency that can be […]

Leave a Reply

Your email address will not be published. Required fields are marked *